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In this paper, a nonlinear bulging factor is derived using a strain energy approach

combined with dimensional analysis. The functional form of the bulging factor contains an

empirical constant that is determined using R-curve data from unstiffened flat and curved

panel tests. The determination of this empirical constant is based on the assumption that

the R-curve is the same for both flat and curved panels.

INTRODUCTION

Bulging refers to the rotation and deflection of the edges of a longitudinal crack in a

pressurized fuselage. Physically, the bulging phenomenon causes local bending at the crack

tips which increases the effective stress intensity factor. The conventional engineering

approach to account for this effect is to apply a bulging factor to the stress intensity factor.

Bulging factors have been developed both analytically and empirically. For example,

one of the most commonly used bulging factors is an empirical formula derived by Kuhn

[1]:

f3s= 1+ lO/_]('ct"_ R>_ 100
' t (1)

1 Also, Hong Kong University of Science and Technology, Kowloon, Hong Kong.
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The obvious shortcoming of this bulging factor is the apparent independence of bulging on

skin thickness. Analytical bulging factors have been derived by Folias [2,3] and by Erdogan

and Kibler [4]. For example, Folias [3] derived the following bulging factor

a _/12(l_v 2
[3e=_/l+O.317E2 , K---_ ) (2)

where a is the half crack length, E is the modulus of elasticity, v is Poisson's ratio, R is

the radius of curvature, and t is the skin thickness. Folias [3] states that equation (2) is

applicable for all values of _. However, the analytical bulging factors [2-4] tend to overes-

timate the bulging effect in most practical cases. This conclusion has been supported by

research performed by Ansell [5] who showed that more realistic deformation behavior in

the vicinity of the crack tip can be achieved using a geometrically nonlinear analysis rather

than a linear analysis. The nonlinear character of crack bulging has been taken into

account by Chen [6] who derived a bulging factor that depends on the applied stress. Fur-

thermore, Broek [7] has noted that bulging causes membrane tension which, in turn, pro-

duces the main resistance to bulge formation rather than bending stiffness. Consequently,

the bulging factor becomes nonlinear because the membrane stress depends on the depth

of the bulge.

In this paper, a nonlinear bulging factor is derived using a strain energy approach

similar to that used by Chen [6], but combined with dimensional analysis. The resulting

bulging formula contains an empirical constant which is determined using R-curve data

from unstiffened flat and curved panel tests. The numerical value of this empirical con-

stant is found by assuming that the R-curve or crack resistance curve is the same for both

flat and curved panels.

DERIVATION OF NONLINEAR BULGING FACTOR

A strain energy approach is used to derive the mathematical form of the nonlinear

bulging factor. The following derivation initially resembles that used by Chen [6].
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The energy release rate is related to the derivative of the strain energy with respect to

half-crack length, and can be written as

d

q=_a(F-U) (3)

where F is the work done by external forces and U is the elastic strain energy of the sys-

tem associated with crack extension. For a pressurized cylinder, the quantity F - U is

assumed to be comprised of two components; one due to crack bulging and another due to

the applied pressure 2, or

d

q = .-d---da(Fbutg_ - Ub,,tgo + F/tat- U/tat )
(4)

The component due to the crack face deformation or bulging is derived by assuming

that the out-of-plane deformation field in the neighborhood of the crack can be character-

ized by the pyramidal shape shown schematically in Figure 1. Denoting s _ and s 2 as

characteristic lengths, and w o as the maximum out-of-plane displacement, Chen [6] found

that

d ~ I dWo

_a (F-U)butg"- 3 lasls2 da (B)

where p is the applied pressure.

The component due to the applied pressure or hoop stress is

-- 2 ga
d (F_U)ftat=p2 R E...._=q/tatda

(6)

2 The present derivation uses this decomposition as a simplifying assumption. However,
this assumption implicitly decouples the effects of applied loading and bulging. Strictly
speaking, these effects should be coupled.
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Figure 1. Deformation of crack faces due to bulging.

Combining equations (5) and (6), the energy release rate for a panel with bulging becomes

l dtOo p2 2 _--+ R (7)G_u,-_,. =_PSl $2 da Et

The bulging factor is defined as the ratio of stress intensity factors for curved to flat

panels, or

K I curve

_SB- Kttzat (8)

The bulging factor is assumed to be related to the energy release rates for panels with and

without bulging by

(9)

Thus, the bulging factor has the following mathematical form:

33O



N/ E'ts,s= (dWo) (10)

At this point, the derivation of the functional form of the bulging factor deviates from

Chen's approach [6], and dimensional analysis is employed. That is, dimensionless con-

stants are used to simplify the mathematical representation of the bulging factor. For

example, the characteristic lengths, s i and s 2, can be expressed in terms of a proportion

to half crack length, a ; or

S1 =(_l a , $2 = (X2a (11)

In addition, an expression for the out-of-plane deformation, which has its basis in large dis-

placement theory of elasticity [8], can be written as

w = _o a Jp_a
o VEt (12)

where st a is a constant. Therefore, the increment of out-of-plane deformation with

respect to crack length can be written as

dw° _/ PCt= _/°°ada - st4 Et st4 ER (13)

since the hoop stress is

_pR
So - --_-- (14)

Thus, a general nonlinear bulging factor may be found by combining equations (10), (11),

(13) and (14):

(1_)
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where ct is an empirical constant. The determination of the numerical value for this

empirical constant is described in the following section.

DATA ON STABLE TEARING

A series of flat and curved panel tests has been conducted by Foster-Miller, Inc.

(FMI) to provide a database from which analytical models can be verified [7,9]. R-curve

data were collected during these tests in terms of stable crack extension versus applied

pressure. For flat panels, crack resistance in terms of the stress intensity factor can be cal-

culated as

[ {n(ao+Aa))KR=ci°x/n(a°+ Aa)_/ sec_ -I_ (16)

where IV is the width of the panel. A regression analysis was performed to fit the FMI flat

panel data to the following two-parameter R-curve equation:

Ke= KoAa b (17)

The results of the regression analysis were: K o = 106.1 ksi-in_/2 and b =0.212.

For curved panels, crack resistance in terms of stress intensity factor depends on the

bulging factor3:

KR=C_o[_B_/n(ao+ Aa ) sec (18)

3 This equation is an approximation to the actual stress intensity factor for fracture
resistance because the curved test panels are biaxially loaded which has not been taken into
account.
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In principle, if the assumption is made that the R-curve is the same for both flat and curved

panels, then the constant, ct, can be determined by combining equations (17) and (18), and

equating the result with the nonlinear bulging factor described by equation (15), or

(19)

Using this equation, a different numerical value for the empirical constant can be calcu-

lated for each collected data point where the amount of stable crack extension was mea-

sured at a given level of applied stress. A total of 251 data points were collected during the

unstiffened curved panel test. Each point was used to calculate the numerical value of the

empirical constant. The average or mean value of _t was found to be 0.6714.

Figure 2 compares the flat and curved panel data, as derived by this method, with the

regression curve. Good agreement between the test data and the two-parameter R-curve

equation is evident between 0 to 0.6 inches of stable crack extension. After Act = 0.6

inches, the curved panel test data are approximately 10% higher than the regression curve

in terms of stress intensity factor.

DISCUSSION

Figure 3 compares the nonlinear bulging factor or equation (15) where ct = 0.671

with other bulging factors, namely, equations (1) and (2). The nonlinear bulging factor is

approximately equal to equation (1) at extremely small values of crack length. As the crack

length increases, however, the nonlinear bulging factor deviates from the Folias bulging

factor which is based on the assumptions of linear elastic material behavior and small dis-

placements. Residual strength tests were conducted on curved panels with ratios of half

crack length to radius of curvature between 0.06 to 0.10. Figure 3 shows that over the

range of test values that the difference between the empirical and the nonlinear bulging

factors is not as significant as that between the empirical and Folias solution.

4 For the FMI curved panels, E was assumed to be 10 msi and R is 75 inches.

333
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Figure 2. R-Curve for flat and curved panels.
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Figure 3. Comparison of bulging factors (R = 75 inches and t =0.040 inch).
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As mentioned previously, the numerical value of the empirical constant was deter-

mined by calculating the constant at each data point on the R-curve from the FMI

curved panel tests, and taking the average or mean value. Figure 4 shows the frequency

distribution of the calculated values for the empirical constant. A normal distribution

curve is also shown for comparison. The mean value was found to be 0.671, and the stan-

dard deviation was 0.095. The frequency plot indicates that 242 of 251 data points resulted

in a value between 0,5 and 0.7. Thus, the mean value of 0.671 appears to be reasonable.

120

1 O0

80

meon = 0.671
stdev = 0.09560

O"

Ix_

40

20

0 I I
0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3

Value of Empirical Constant

Figure 4. Distribution of numerical values for empirical constant
in nonlinear bulging factor.

Predictions of failure were made for the Foster-Miller curved panels using the two-

parameter R-curve equation and the nonlinear bulging factor. Two tests were conducted at

the FMI full-scale test facility with unstiffened curved panels [9]. Table 1 lists the results of

these tests which used two different values of initial crack length. The table compares the

test results with the failure predictions based on the R-curve analysis. Predictions of failure

stress are shown to be within 10% of the experimental data, which is within reasonable

engineering agreement. Figure 5 shows a plot comparing the R-curve predictions with the

experimental results.
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Table 1. Failure Stresses for Foster-Miller Unstiffened Curved Panels

Initial half-crack length
(inches)

Failure stress

(ksi)

% difference

Prediction Experiment

5.5 13.4 12.2 + 9.8%

8.0 8.8 9.2 -4.3%

25

20

"-1 15
t_

o)

u 10

"E-

R-Curve Analysis

Experim_l_tal Data

J I , I , I0
0 5 10 15

Half crack length (inches)

Figure 5. Failure predictions for FMI curved panels using R-curve
data and nonlinear bulging factor.
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The effect of biaxial loading has not been explicitly taken into account in the present

methodology. Bulging is affected by the ratio of hoop-to-longitudinal stress. Chen [6]

found that the bulge factor of a biaxially loaded specimen is significantly lower than that of

a uniaxially loaded specimen.

Since the results presented in this paper were generated on the basis of two unstif-

fened curved panels, the results are considered to be developmental. While additional

research is recommended in the determination of appropriate bulging factors, the approach

presented in this paper appears to give encouraging results.

CONCLUSIONS

The mathematical or functional form of a nonlinear bulging is derived using a strain

energy approach similar to that used by Chen [6]. The derivation is complemented with

dimensional analysis which leads to an unknown or empirical constant in the nonlinear bul-

ging factor.

A methodology to determine the numerical value of the unknown constant is pro-

posed in this paper. The methodology is based upon the assumption that the R-curve is the

same for both flat and curved panels. Experimental data from unstiffened flat and curved

panel tests were used to demonstrate the application of this approach. Different values for

the empirical constant are calculated for each data point where stable crack extension is

measured at a given level of applied load. The average of all these values is taken as the

numerical value of the empirical constant.

Failure predictions of two unstiffened curved panels were made using the measured

R-curve data and the nonlinear bulging factor as determined by the present technique.

Analytical predictions of panel failure were found to be within 10% of the experimental

values.
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